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Abstract— Ensuring precise localization is key to most
mobile-robot systems, not least those that are deployed in
industrial settings. However, even state-of-the art lidar-based
systems may fail or lose accuracy, in particular in feature-
sparse environments (e.g. transport corridors and fully stacked
warehouse aisles). In this paper, we introduce alignability maps
that spatially capture localization risk and predict where in a
map localization may be less accurate. Our proposal is based
on the concept of alignability, which represents the capacity
of a given range scan to be aligned with subsequent ones. We
explore different measures of alignability and evaluate them
in terms of their ability to predict localization error. Our
experiments show that alignability maps, which we deploy in
different industrially relevant environments, serve to predict the
quality of localization. Finally, we also integrate our approach
in a motion planning use case. Our results demonstrate that a
planner can incorporate our alignability maps as cost maps to
generate paths with lower risk of localization error.

I. INTRODUCTION

Ensuring accurate localization is essential to most real-

world applications of mobile robots. Localization in a map

is typically performed by a Bayesian filter; e.g., Monte Carlo

localization (MCL) or Kalman filters (KF). Despite demon-

strated success, even state-of-the-art localization methods

may work poorly or fail; e.g., due to inadequate or insuf-

ficient features [1, 2, 3]. Our aim is to be able to predict

localization risk (i.e., the risk of generating inaccurate pose

estimates) and account for it by taking preemptive measures;

e.g., such that a planner can generate “risk-aware” paths that

takes both the risk of inaccurate localization and the path

length into account.

Some recent methods attempt to determine whether the

current sensor view contains sufficient features to be matched

to a map [3, 4]. However, the potential loss of localization

may be overestimated by such measures as they do not

consider the temporal filtering aspects inherent in localization

methods like Monte Carlo localization. There is also a body

of literature on assessing the quality of localization post-

hoc [5, 6, 7], but such methods are not useful for proactively

avoiding inaccurate localization.

In this work we evaluate a recent alignability metric [4]

that captures the variety of surface directions computed from

plane patches, and compare it to two metrics based on an

estimate of the covariance of the D2D-NDT scan alignment

function [8]. Our experiments show that alignability can be

used as an indicator of the expected localization error and we
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validate (with Granger causality tests [9]) that it also serves

to anticipate the occurrence of errors. To enable spatial

prediction, we introduce an alignability map in which each

cell represents the expected alignability that can be obtained

from different scans within that area. As a use case, we

also propose to include alignability maps as cost maps for a

motion planner, which generally leads to better localization.

Regarding related works, the key focus is usually put on

online monitoring of the positioning error. A key example

is the work by Akai et al. [10], which proposes a model of

scan misalignment based on Markov Random Fields (MRFs)

to measure localization error. However, this method does not

anticipate risk, thus allowing only reactive behavior.

There also exist well-established approaches that measure

the scan overlap [11, 12]. However, they are not directly

applicable to anticipate localization quality either, since it

is not generally possible to set a single threshold that can

be applied in different environments [5]. Other works are

aimed at a more elaborate fault detection of scan alignment.

Bogoslavskyi and Stachniss [7] propose a metric based on

free-space information for assessing scan matching quality,

although they restrict to objects segmented in a scene. From a

more generic perspective, Yin et al. [13] introduce a method

based on logistic regression and metrics related to point cloud

overlap and similarity for the classification of alignment

errors. Also, Almqvist et al. [5] study a number of “weak”

alignment classifiers and combine them with AdaBoost.

In contrast to the above, there exist recent approaches

that directly estimate the probability of localization error

based on the environment’s characteristics. Nubert et al. [3]

propose a neural network-based method for estimating the

risk of localization failure caused by a lack of environmental

features. An alternative approach is the one by Nobili et al.

[4], which predicts alignability based on an analysis of the

geometry of point clouds. Although both of these methods

aim to predict the risk of mislocalization, none are based on

a spatial representation of such risk, which is our focus.

In summary, the overall contributions of the paper are: (1)

a definition of alignability maps based on different measures,

(2) a statistical assessment of these measures as predictors

of localization error and (3), a validation of the utility of

alignability maps for motion planning.

II. ALIGNABILITY MAP

In this section we introduce the different measures we

have considered to represent alignability and then show how

to use them to build a complete alignability map.

A. Nobili’s alignability metric

We implement the definition of alignability proposed in

Nobili et al. [4] as follows. Given an input point cloud



P , we first segment it into a set of n planar surfaces

P = {P1, P2, ..., Pn}. For that, we apply the region growing

algorithm in Rabbani et al. [14]. Each surface will be con-

sidered only if its planarity and size are adequate, according

to appropriate thresholds pth and sth. For each Pi ∈ P,

we compute a normalized covariance matrix Σ. Then, we

calculate planarity as p = λs/λl, where λs and λl are

the smallest and largest eigenvalues of Σ, respectively. If

p < pth, we consider Pi as planar and then compute its area

s. Finally, the plane will be accepted if s > sth. The values

for the thresholds are of 0.05 for pth and of 0.01 m2 for sth.

From this process, we get a subset of selected planes

Ps ⊆ P that will be considered to compute alignability,

as follows. First, a normal direction nj = (xj , yj , zj) is

obtained for each point j of all the planes in Ps, with N
the total number of points. Then, an N × 3 matrix M in

which each row represents a normal nj is defined. After

that, a principal component analysis (PCA) is performed on

M, from which we get three eigenvalues, λa ≥ λb ≥ λc ≥ 0.

Finally, Nobili’s alignability is defined as αN = λc/λa,

where αN ∈ [0, 1] ⊂ R. The closer to 1 this value is, the

higher the variety of surface normals will be in the given

scan, and therefore, the better the alignability.

B. NDT-based alignability metrics

In scan registration it is common to estimate a covari-

ance matrix related to the pose estimate obtained from an

optimization problem. Such uncertainty, which should be

small for well-aligned point clouds and higher for more

troublesome cases, can be seen as a form of alignability. In

this work we will use the D2D-NDT [8] as a cost function,

which has previously been shown to accurately indicate

successful alignment [5]. Alignability can be then defined

on the D2D-NDT covariance matrix as follows.

The 3D-NDT representation describes an input point

cloud as a set of Gaussian probability distributions, i.e.,

NDT(P) = {N (µi,Σi)} with i = 1, ..., nP , where nP

is the number of distributions in the model. D2D-NDT

scan registration [15] minimizes the L2 norm between the

probability distributions associated with the models of a pair

of point clouds P1 and P2. The result is a transformation

p, consisting of a translation t and a rotation matrix R. The

objective function is given by

fD2D(p) =

nP1
∑

i=1

nP2
∑

j=1
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where µij = Rµi+t−µj and d1 and d2 are parameters with

fixed values (see [8]). However, the estimated optimum p̂ is

not perfect, and a related covariance matrix cov(p̂) is defined

to account for errors. In this work we use equation (1) for a

single point cloud at p = 0, since we are only interested in

the alignability of a single scan. Then, we approximate the

covariance matrix as in [8]

cov(p̂) ≈

(
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Fig. 1. Environment used in our simulations. (Left) Real warehouse aisles.
(Right) Virtual environment with the simulated truck robot and its 3D lidar.

where z represents the sensory measurements used for

the computation of (1). Finally, we define the NDT-based

alignability metrics as the trace and maximum eigenvalue of

matrix cov(p̂), which we denote αT and αM, respectively.

C. Definition of alignability map

An alignability map A is a 2D matrix-based representation

of the environment in which each cell is computed as

A(i, j) = median(a), where a = (α1, α2, ..., αn) is a vector

of n samples of alignability values (i.e., each αi could be

represented by either αN, αT or αM) obtained from point

clouds produced by a sensor placed within the region of the

scene corresponding to cell (i, j). To prevent biasing of the

alignability score, we use robust statistics, i.e., median. We

will also assume that the sensor has a 360o field of view, thus,

each cell only denotes position. For the case of 3D sensors

with a restricted field of view, different layers of alignability

maps could be used for different orientations, and, in the case

of 2D sensors, lines would be considered instead of planes.

Since the alignability value usually changes gradually, we use

a lower resolution for the alignability map (1 cell/m) than

for the corresponding occupancy grid (10 cells/m). Finally,

alignability is only computed for obstacle-free cells.

III. VALIDATION

We experimentally demonstrate the utility of the alignabil-

ity map in both virtual and real environments. The virtual one

is based on Gazebo and ROS [16] and it incorporates a 3D

mesh of a real food warehouse in Sweden (see Fig. 1), which

has been obtained on-site by using a Toyota BT SAE200

stacker truck, endowed with a Velodyne HDL-32E 3D lidar.

Our virtual environment also includes this robot with the

3D lidar (see Fig. 1). We also provide qualitative results

from a different use case, i.e., transport robots, which we

implemented live in underground transport corridors by using

a custom mobile manipulation platform Robotnik Kairos+,

endowed with an Ouster OS0-128 lidar.

A. Building of alignability maps

We have produced a different alignability map of the

warehouse environment for each metric by generating 3D

laser scans from several points in the Gazebo model (Fig. 1).

Since we aim to be able to provoke noticeable localization

errors, we have cropped the maximum range of the simulated

lidar to only 6.5 m, a much shorter distance than the average

length of the aisles in the warehouse (approximately 30 m).

The resulting maps, with a resolution of 1 meter per cell,

are shown in Fig. 2(a) and (b). For space reasons we have
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Fig. 2. (a) Alignability map based on Nobili’s metric for the food warehouse, with waypoints. (b) Alignability map of the same warehouse, based on the
NDT maximum eigenvalue metric. In both maps, colors indicate values of alignability (see legends placed bottom left). (c) Error map obtained during the
driving experiment. Here, colors indicate the ratio of error obtained w.r.t. the maximum one (0.8 m) according to the top left legend. (d) and (e) Motion
planning experiments in Section III-C. Blue trajectories represent paths generated by considering alignability costs, while red ones do not consider them.
Green squares delimit a region with extremely low alignability. (d) Experiments A-B and C-D. (e) Experiments E-F and G-H.

Fig. 3. Alignability map based on Nobili’s metric for the corridor
environment, with waypoints. (A 3D-NDT map is shown overlayed, with
yellow points.) As expected, alignability is low in the featureless corridors,
but higher near the end of corridors and when passing other passages.

omitted the map based on the trace of the covariance (it looks

similar to the one in Fig. 2(b)).

Regions with both a low Nobili alignability and a high

value of the NDT-based metrics usually correspond to

feature-sparse parts of the scene, like the long corridor B-C.

Conversely, regions with a higher amount of features (e.g.,

corners) tend to have a higher value of the Nobili metric

and a lower value of the NDT-based ones, as in the case

of corridor A-D or the area between points A and B. Thus,

we can affirm that the proposed maps correctly capture the

variety of features in the environment, as expected.

We have also produced an alignability map based on

Nobili’s metric for the real experiment (see Fig. 3), which

correctly captures both feature-sparse and feature-rich re-

gions. High values of the metric correspond to places where

there are corners (e.g., around waypoints E, F, I, K or M) or

junctions (waypoint G), while low values correspond to the

mid parts of long corridors, like in waypoints H, J or L.

B. Alignability as a predictor of localization errors

To illustrate the relationship between alignability and

localization error, we have conducted an experiment in which

the robot drives along a rectangular trajectory (see Fig. 2)

that is repeated three times. We have estimated the robot

position pest by using NDT-MCL localization [17] and

have calculated the error e with respect to the ground-
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Fig. 4. Evolution of localization error and alignability metrics during the
simulated experiment of section III-B. (Top) Localization error and Nobili’s
metric. (Bottom) Localization error and NDT-based metrics. The three events
marked as E correspond to localization errors higher than 0.6 m, the ones
labeled as N to Nobili’s alignability values lower than 0.01 and the ones
marked as M to NDT-based alignability values higher than 0.24m

2 for the
trace and 0.18m

2 for the maximum eigenvalue. The time series have been
filtered by using a moving median filter with 6 seconds of window size.

truth provided by Gazebo pgt. We have also built a map of

localization errors. For each cell (i,j) of this map, the error is

e(i, j) = (1/Ns)
∑Ns

k=1
∥pest(k)−pgt(k)∥, where k denotes

a sample of the estimated and ground-truth positions, out of

a total number of Ns samples. The obtained map is depicted

in Fig. 2(c). Despite the low alignability in corridor B–C,

notice that the highest localization errors (around 0.8 m) are

only obtained towards the end of it, due to the robustness of

MCL over time. Thus, alignability serves to identify feature-

sparse regions that might lead to higher errors in the future.

In the following we demonstrate the utility of alignability

as a predictor of localization error (see Fig. 4). We have

marked every time the error gets noticeably high and also

all events of extremely poor alignability. In Fig. 4 we can

observe that each peak of localization error always takes
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Fig. 5. (Left) Boxplots for the localization errors obtained in the motion
planning experiments in Figs. 2(d) and 2(e). Blue plots show the errors
from the planner that uses alignability information, and red plots show the
uninformed planner. (Right) View of the largest errors.

place some time after the events of poor alignability (around

18 seconds for Nobili’s metric and 39 seconds for the NDT-

based metrics, on average). Thus, we can visually assess that

the alignability metrics are useful to predict localization er-

rors. We have also demonstrated this more formally through

statistical Granger causality tests. The main parameter of

a Granger test is number of past values (number of lags)

to consider. Specifically, we have tested from 160 to 200

lags (i.e., 16–20 s) for Nobili’s metric and from 370 to 410

lags (i.e., 37–41 s) for the NDT-based ones, according to the

average reaction times observed. In all Granger tests, each

based on a Pearson’s χ2 with a significance level of 0.05,

the null hypothesis H0 was confidently rejected (p-values are

around 0.02 for Nobili’s metric and below 2 · 10−18 for the

NDT-based ones) meaning that all the alignability metrics

Granger-cause the localization error.

We have also performed a single-query computation time

study on a PC with an Intel i7-11850H at 2.5GHz and 32

GB DDR4. Mean time results for the cropped lidar range

are of 0.1013 s for Nobili’s metric and 0.0232 s for the

NDT-based ones. For the full lidar range, mean times are of

0.1255 s and 0.0451 s, respectively; thus, NDT-based metrics

always perform better and their use is preferred in time-

critical applications.

C. Alignability in motion planning

Finally, we have also carried out simulations to illus-

trate the impact of considering alignability in motion plan-

ning, which we have implemented by using the standard

move base ROS package [16]. Then, we have produced a

binary version of the alignability map in Fig. 2(a) (by using

a threshold of 0.02 for Nobili’s metric, considered very poor

alignability) and employed it as a cost map for the motion

planner. This is done to force the motion planner to avoid

regions with extremely low alignability.

We have performed four experiments in which the robot

follows a path between two waypoints. Each experiment

has been repeated two times, leading into different paths

(see Figs. 2(d) and 2(e)). Those ignoring alignability costs

(red) are the shortest possible, while the other ones (blue)

tend to avoid the two central corridors, which exhibit lower

alignability (see Figs. 2(a) and 2(b)). We have also measured

the localization errors for each path (see Fig. 5), finding

that those generated by considering alignability costs always

suffer from lower errors.
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(a) Experiment C-D (no alignability)
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(b) Experiment G-H (no alignability)
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(c) Experiment C-D (alignability)
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(d) Experiment G-H (alignability)

Fig. 6. Alignability and localization error measured over time for motion
planning experiments C-D and G-H. Results are shown for paths that
consider alignability as a cost as well as for those that do not. Green
dashed lines in plots (a) and (b) delimit the time interval corresponding
to navigation within the region with extremely low alignability marked in
Figs. 2(d) and 2(e).

Finally, we have also measured alignability for all the

experiments. For the sake of brevity, we only show the

results for C-D and G-H (see Fig. 6). In general, paths made

by the plain motion planner (Figs. 6(a) and 6(b)) suffer

from lower values of alignability and much higher errors

compared to the others (Figs. 6(c) and 6(d)), as expected.

However, it is interesting to analyze why localization is much

worse in experiment C-D compared to G-H for paths that do

not consider alignability, even when they follow the same

corridor but in opposite directions.

In experiment C-D, the robot first faces an extremely

low alignability region for approximately 25 s (see green

dashed lines in Fig. 6(a)) and localization error increases

from 0.07 to 0.92 m. Later on, although alignability slightly

increases, it is still low for approximately 20 more seconds,

and the error gets much worse. In contrast, when the path is

followed the other way round (Fig. 6(b)), localization error

can be recovered before entering the region with extreme

low alignability (green lines in Fig. 6(b)) and, although such

error increases up to 0.8 m, it is low enough to recover when

exiting the corridor.

IV. CONCLUSIONS AND FUTURE WORK

We have introduced the notion of alignability map, which

aims to represent the risk of localization error by considering

the geometry of the environment. We have validated this map

in both virtual and real scenarios, finding that it correctly

captures the amount and variety of features present. We have

also shown, through statistical testing, that the alignability

metrics considered can be used to anticipate localization error

and therefore that our map can be used to predict it. Finally,

we have demonstrated that using alignability maps in motion

planning serves to decrease localization error in navigation.

In future works, we plan to extend our approach so that

it includes different sources of information for estimating

localization risk (e.g., dynamics of obstacles). Also, we plan

to validate our map for a wider variety of settings, e.g., for

outdoor and unstructured environments.
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NDT)”. PhD thesis. Örebro University, 2012.

[9] C. W. J. Granger. “Investigating Causal Relations by

Econometric Models and Cross-spectral Methods”. In:

Econometrica 37.3 (1969), pp. 424–438.

[10] N. Akai, Y. Akagi, T. Hirayama, T. Morikawa, and

H. Murase. “Detection of Localization Failures Using

Markov Random Fields With Fully Connected Latent

Variables for Safe LiDAR-Based Automated Driving”.

In: IEEE Transactions on Intelligent Transportation

Systems (2022), pp. 1–13.

[11] A. Segal, D. Haehnel, and S. Thrun. “Generalized-

ICP”. In: Robotics: Science and Systems V. Robotics:

Science and Systems Foundation, June 2009.

[12] Q. Liao, D. Sun, and H. Andreasson. “Point Set

Registration for 3D Range Scans Using Fuzzy Cluster-

Based Metric and Efficient Global Optimization”. In:

IEEE Transactions on Pattern Analysis and Machine

Intelligence 43.9 (Sept. 2021), pp. 3229–3246.

[13] H. Yin, L. Tang, X. Ding, Y. Wang, and R. Xiong.

“A failure detection method for 3D LiDAR based

localization”. In: 2019 Chinese Automation Congress

(CAC). 2019, pp. 4559–4563.

[14] T. Rabbani, F. A. van den Heuvel, and G. Vosselman.

“Segmentation of Point Clouds using Smoothness

Constraints”. In: International Archives of the Pho-

togrammetry, Remote Sensing and Spatial Information

Sciences 36.5 (2006), pp. 248–253.

[15] T. Stoyanov, M. Magnusson, and A. J. Lilienthal.

“Point Set Registration through Minimization of the

L2 Distance between 3D-NDT Models”. In: St. Paul,

MI, USA, May 2012, pp. 5196–5201.

[16] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,

J. Leibs, R. Wheeler, and A. Y. Ng. “ROS: an open-

source Robot Operating System”. In: ICRA workshop

on open source software. 2009.

[17] J. Saarinen, H. Andreasson, T. Stoyanov, and A.

Lilienthal. “Normal Distribution Transform Monte-

Carlo Localization (NDT-MCL)”. In: Proc. IEEE/RSJ

Int. Conf. on Intell. Robots and Syst. 2013, pp. 382–

389.


